Effects of mitochondrion on calcium transients at intact presynaptic terminals depend on frequency of nerve firing.
نویسنده
چکیده
The rate and the total amount of Ca2+ elevation in the presynaptic terminals of bullfrog sympathetic ganglia depend on the firing frequency of the terminals. Carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, was used for testing whether mitochondrial Ca2+ uptake is one of the mechanisms that underlie this frequency dependence. Fura-2 fluorimetry was used for measurement of intraterminal Ca2+. When stimulations of different durations (30 and 1.5 s) and frequencies (4 and 20 Hz) evoked Ca2+ transients with similar peak amplitudes (264 +/- 22 nM vs. 251 +/- 18 nM, means +/- SE), CCCP augmented the responses to the 4-Hz stimulation 8.9 times more strongly than it did the responses to the 20-Hz stimulation (249.7 +/- 81.5% vs. 25.3 +/- 10.2%). When stimulations delivered at the two frequencies had the same durations (1.5, 3, 6, 10, 20, and 30 s), CCCP enlarged the responses to the 4-Hz stimulations up to 4.2 times more than it did the responses to the 20-Hz stimulations. When the same number of stimuli (120) was delivered at the two frequencies, the effects of CCCP on the responses evoked by the 4-Hz train were again 6.8 times stronger than its effects on the responses to the 20-Hz stimulation. Therefore neither the peak amplitudes of the responses nor the durations of the stimulations dictated the extent to which the mitochondria modulated the peak [Ca2+]i. Instead, the extent of the modulation was governed by the frequency of stimulation. Specifically, the less frequent the Ca2+ influx, the stronger the mitochondrial modulation. Also, during nerve firing Ca2+ release from the ryanodine-sensitive store had a higher potential to influence the [Ca2+]i transients than did Ca2+ removal by the mitochondria for the first 6 s of the responses. On cessation of stimulation, CCCP reduced the initial rapid rate of Ca2+ decay. Thus uptake by the mitochondria was an important mechanism for Ca2+ removal after repetitive firing at the presynaptic terminals.
منابع مشابه
Ryanodine-sensitive component of calcium transients evoked by nerve firing at presynaptic nerve terminals.
Whether Ca2+ released from stores within the presynaptic nerve terminals also contributes to the Ca2+ elevation evoked by action potentials was tested in intact bullfrog sympathetic ganglia. Intraterminal Ca2+ transients (Delta[Ca2+]i) were evoked by electrical shocks to the presynaptic nerves at 20 Hz and were monitored by fura-2 fluorimetry. Ca2+ released through intraterminal ryanodine-sensi...
متن کاملCalcium and Vesicle Recruitment at the Calyx of Held
When it comes to synaptic vesicles, synapses seem to know a thing or two about supply and demand. High-frequency stimulation increases exocytosis and results in an accelerated recruitment of additional vesicles within the nerve terminal, a process thought to rely on intracellular calcium. This week, Hosoi et al. took advantage of the accessibility of the presynaptic terminal at the calyx of Hel...
متن کاملNicotine induces calcium spikes in single nerve terminal varicosities: a role for intracellular calcium stores.
While nicotine is known to act at neuronal nicotinic acetylcholine receptors (nAChRs) to facilitate neurotransmitter release, the mechanisms underlying this action are poorly understood. Some of its effects are known to be mediated by presynaptic receptors. In the mouse vas deferens nicotine (10-30 microM) transiently increased the force of neurogenic contraction by 135+/-25%, increased the amp...
متن کاملPresynaptic action of neurotensin on cultured ventral tegmental area dopaminergic neurones.
Dopamine-containing neurones of the ventral tegmental area express neurotensin receptors which are involved in regulating cell firing and dopamine release. Although indirect evidence suggests that some neurotensin receptors may be localised on the nerve terminals of dopaminergic neurones in the striatum and thus locally regulate dopamine release, a clear demonstration of such a mechanism is lac...
متن کاملAction potential-evoked and ryanodine-sensitive spontaneous Ca2+ transients at the presynaptic terminal of a developing CNS inhibitory synapse.
The existence of spontaneous calcium transients (SCaTs) dependent on intracellular store activation has been reported in putative axonal terminals of cerebellar basket interneurons. We used the two-photon imaging technique to optically identify basket terminals in acute cerebellar slices of young rats (11-16 d old) and study the properties of SCaTs unambiguously localized in these regions. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 80 1 شماره
صفحات -
تاریخ انتشار 1998